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ABSTRACT 

Knowledge about the temperature distribution within the geothermal system is considered significant in geothermal exploration. The study 

is mainly done by the costly well drilling, and/or a number of indirect geothermometers which only provide limited information. In this 

work, the static geothermal heat distribution was analyzed based on the proven relation between resistivity and temperature. The 

temperature was estimated after the application of indirect electromagnetic geothermometer which employs the calibrated artificial neural 

network. A validation test of this method was satisfying as the predicted temperature profiles were diverse to the measured ones with 

around 10% of relative error. Following the results, a full assessment of subsurface temperature was performed, approximated from a 

three-dimensional audio-magnetotelluric inversion result. The varying geothermal gradients within the area and the resistivity anomalies 

provide an idea about the existing geothermal structure and the fluid-heating system under the field examined in this study. As a 

conclusion, forecasting the temperature from the resistivity value can be considered as a quick and reliable method to massively explore 

the geothermal resource potential. 

1. INTRODUCTION 

Geothermometry has been an essential study in geothermal exploration which is purposing to get the subsurface temperature information 

rather than using the costly borehole logging. The study is based on the association between the rock-fluid conditions and the formation 

temperature. Indirect geothermometer is a significant part of the geochemical analysis. Geothermometer based on alteration mineral is 

one of the commonly used methods. Some other types make use of the gas and isotope content of the material. The temperature at the 

unreachable depths, usually the depth of reservoir zone, is mainly predicted by the presence of chemical elements in geothermal fluids or 

rock samples. The degree of heat is indirectly estimated from the established empirical formulas which also, to some extent, require 

lithological information. 

Electromagnetic geothermometry is a recently designed approach to do such a task. This method does not need any sample in situ, nor 

prior lithological information. The estimation is based on electromagnetic data which has been calibrated through the application of 

artificial neural network in advance, as introduced by Spichak (2006). By using the electromagnetic-based geothermometer, the relation 

is learned through the artificial neural network (ANN) so that the network will be able to predict the temperature from the given resistivity 

value (Spichak et al., 2011). The reliability of this approach had been evaluated in several studies (e.g., Akpan et al., 2014; Spichak and 

Zakharova, 2009). A comprehensive discussion about this method is summarized in a book by Spichak and Zakharova (2015). However, 

the number of research proving the trustworthiness of this approach remains small. 

In this study, this approximation was assessed and applied to give a principal idea about the subsurface temperature condition. Concerning 

the model resolution, audio-frequency magnetotelluric (AMT) method was used to enhance the data density. Following the result of the 

temperature estimation, joint interpretation of the resistivity and the static temperature anomaly was also carried out to delineate a proper 

model of the existing geothermal system. The content of this paper is adapted from the preliminary study in an extended abstract by 

Maryadi and Mizunaga (2017). 

2. GEOTHERMAL FIELD DATA 

The AMT and temperature data used in this work was acquired from the exploratory studies of an active geothermal field in Japan which 

has been producing electricity for more than 20 years. To analyze the possibility of the reservoir expansion, an AMT survey consists of 

more than 60 measurement sites was carried out. A number of wells were also drilled throughout the area to get a convincing knowledge 

related to the geological condition and heat propagation. The depth of penetration of the wells is around 1,500 m in average. The locations 

of the AMT stations and the borehole drilling sites are illustrated on the map in Figure 1. The map was rotated 25° NW so that the station 

location can be easily recognizable in the 3-D resistivity maps showed later in the last section. 

Six available AMT-temperature datasets were used as the network learning basis (SK201-BT1, SK302-BT2, SK106-BT3, SK505-BT4, 

SK707-BT5 and SK509-BT9). The resistivity resulted from inversion process, and its spatial coordinates were tied with the temperature 

profile from the adjacent borehole thermogram as one dataset. This AMT-temperature dataset was then employed as input and output, 

respectively so that the network could learn the relationship behavior. Each of them carries essential information about the subsurface 

condition. Therefore, it is still necessary to analyze both data individually before using them for teaching the network as well as performing 

the prediction. The geological investigation had also been carried out. Some of the conclusions are explained beforehand so that the 

necessary information about the subsurface condition is understandable. 
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Figure 1: Location map of the study area (after Maryadi and Mizunaga, 2017). 

 

2.1 Surface Geology and Well Log Data 

The studied geothermal field is located at a highland, around 900 m above sea level. The area is covered by volcanic materials which 

came out from the mountain complex located approximately 5 km to the east since Pleistocene epoch. The deeper formation is mainly 

composed of sandstone and shale which is taking a role as the basement rock. It was presumed that the present geothermal activity is 

primarily due to the presence of the inactive volcanic body related to the nearby volcanic mountain. From the exploratory wells, the 

measured temperature below the area was estimated around 230 °C in average. The previous geological investigation suggested that the 

geothermal fluids are infiltrating downward through the existing fracture systems within the surrounding graben-like structure. The fluids 

penetrate to the porous volcanic body approximately around 1-2 km. They circulate and being heated by the heat source before going 

upward through the other fault structure. 

The major faults in this geothermal area are mainly elongated from west-southwest to east-southeast. These structures have a strike of 

about 60° NE. One of them is located in the north-western vicinity with the steep dip angle of 70° facing the north. Another structure 

appears in the south-southwestern part outside the area and the fault plane dips 60° to the south. The strike and dip information were 

obtained from thermo-remnant magnetism analysis of the extracted cores. There are a number of fumarole discharges in this area. Those 

manifestations are aligned parallel with the principal angle of the fault structures which could be evidence that the faults are meaningful 

for the outflow movement and general circulation of the geothermal fluid. 

2.2 AMT Data Processing 

AMT method employs high-frequency range starts from 10-1 to 104 Hz. This range enables the signal to propagate up to an approximated 

depth of 2,000 m. The data were undergoing the pre-inversion process such as coherence analysis, distortion removal, and static shift 

correction to minimalize the prediction inaccuracy due to the propagation of errors. This subsection is only focusing on the processing 

steps of the AMT training dataset mentioned before. The quality of the training data is vital as the neural network will count on them as 

the foundation for the prediction. 

2.2.1 Dimensionality Analysis 

Delineating the electrical resistivity model is highly depending on the distortion level in the data, or known as dimensionality. The 

measured MT or AMT data are commonly affected by distortions due to local inhomogeneity or induction by three-dimensional structures. 

Each dimensionality model has its own characteristic. Therefore, one should take this property into consideration in the subsurface 

resistivity modeling. The three-dimensional distortion level in the impedance tensor should be checked, as the ANN will learn about how 

the resistivity related with temperature based on its 1-D inversion result. The dimensionality analysis of the AMT stations inside the 

profile was evaluated by using the Swift’s skew (κ) with the following formula 
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𝜅 = |
𝑍𝑥𝑥 + 𝑍𝑦𝑦

𝑍𝑥𝑦 − 𝑍𝑦𝑥
| ,                                                                                                                                                                                    (1) 

where Zxx, Zyy, Zxy, and Zyx are the elements of impedance tensor (Swift, 1967). The skew value of 1-D characterized subsurface should be 

zero and getting larger as the dimensionality is getting complex. A threshold value of 0.2 was chosen to compromise the occurrences of 

small distortion in the impedance tensor. However, the low κ skew value does not always indicate a free distortion structure. Therefore, 

another analysis to support the result of Swift’s skew is necessary. 

The ellipticity of the phase tensor was analyzed. The phase tensor of the magnetotelluric signal, introduced by Caldwell et al. (2004) is 

basically illustrated as an ellipse whose form is determined by its coordinate invariants: maximum phase (Φmax), minimum phase (Φmin), 

and the skew angle (β). The elongation of the ellipse could also indicate the primary geoelectrical structure. In the one-dimensional case, 

the maximum and minimum values in the phase tensor are expected to have no difference so that the ellipse will form like a circle with a 

skew angle of zero. A quantitative analysis of the ellipticity (E) is formulated by 

𝐸 =
Φ𝑚𝑎𝑥 − Φ𝑚𝑖𝑛

Φ𝑚𝑖𝑛 + Φ𝑚𝑖𝑛
  .                                                                                                                                                                               (2) 

To be regarded as 1-D structure, the ellipticity measured in the location should be less than 0.1 (Bibby et al., 2005). The results of Swift’s 

skew and ellipticity analysis are shown in Figure 2. Generally speaking, both skew values and ellipticity are considered small, while in 

some frequencies the values are quite high in the northern part and are relatively lower in the southern and eastern parts. Taking this result 

into account, the use of a 1-D resistivity model of the six AMT training data for estimating the temperature up to the desired depth is 

considered acceptable. 

2.2.2 One-Dimensional AMT Inversion 

Thermogram data was recorded for every 10 m interval downwards. To counterbalance the resolution of temperature data, the subsurface 

resistivity data should be modeled smoothly. In this work, Occam 1-D inversion algorithm was adopted (Constable, 1987). The inversion 

was carried out using the source code developed by Key (2009). The inversion was based on the determinant of the impedance tensor. 

The initial model depth was 2 km occupied 30 layers which are elongated with depth starting from 10 m thickness at the surface layer. 

The inversion results of the AMT data used for training are shown in Figure 3. The RMS misfit is generally small, about 4% in average. 

From the 1-D inversion result, it could be inferred that for the shallow depth the resistivity is predominantly high in every station which 

is exceeding 100 Ωm. The thickness of this overlying resistive layer is, however, varying from one location to another. For the upper three 

inversion results in Figure 3, the maximum depth of this high resistivity deposit is, to some extent, shallower than the one recorded for 

the other three sites. 

In the subsequent zone, all the resistivity inversion results indicate the appearance of the conductive layer. This is most probably the 

representation of the impermeable cap rock. Since each AMT station has a different thickness of the resistive top layer, this conductive 

impermeable layer was also encountered at the different depth. For the AMT station SK201, SK302, and SK106 the lowest resistivity 

value is recorded at 400 m depth. For the other three stations, this anomaly is found below that depth.  

 

Figure 2: Swift’s skew (red squared line) and ellipticity (blue circle) values for every frequency in the AMT impedance and phase 

tensor data. The selected stations are the one used in ANN training stage. 
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Figure 3: One-dimensional inversion results of six AMT data which were used as the learning basis (solid line is the true resistivity 

value, while the dotted line and thin line with error bars are the observed and the calculated apparent resistivity, respectively). 

 

On the other hand, the thickness of this conductive layer of each station is also not similar which could be an indication of the alteration 

intensity occurred in the particular location as the layer is mainly formed by clay, the product of hydrothermal alteration process. The 

resistivity of the deeper part is much higher than the overlying clay cap which apparently suggests the zone of the porous reservoir. 

However, instead of merely interconnecting the 1-D resistivity structures from different AMT sites, a broader analysis should be carried 

out in order to conclude a comprehensive interpretation. 

3. THE NEURAL NETWORK CALIBRATION  

The relation between temperature of a material and its electrical characteristic have been studied extensively (see, for instance, Yokoyama 

et al., 1983; Llera et al., 1990; Hayashi, 2004). Most of them were agreed to the conclusion that the electrical conductivity and temperature 

are related exponentially. However, the empirical formula has not been revealed yet due to complex geological and hydrological behavior 

in the subsurface. In the electromagnetic geothermometry approach, the relationship between resistivity and temperature in every location 

was learned instead. 

The neural network learns from the available resistivity-temperature data pairs in the training stage. To be able to predict the temperature, 

the ANN should modify the weight and minimize the error during the learning process, until reaching the predefined stopping criteria. To 

do such a task, the back-propagation algorithm was used. The input signal, containing resistivity and its coordinate, is propagating through 

the network to predict the temperature. Firstly, the connections inside the network were assigned with random weight values. When the 

estimated value is far from the expected, the signal is going back to the input layer while updating the weight based on the difference 

between the network output and the actual temperature value. The process iterates until the maximum iteration is reached, or stops in 

regards to the chosen error threshold of 10-5. 

It does not matter if one trains the network by using 1-D, 2-D, or 3-D resistivity model as the input information. The training result could 

still be used for any model, e.g., using 1-D training result to estimate the 3-D temperature distribution. It is worth mentioning that the 

ANN interpolation works better than ordinary methods, such as kriging interpolation (Koike et al., 2001). That finding implies that in 

order to make a 3-D temperature distribution model like the one attempted here, it is preferable to estimate the temperature based on the 

interpolated resistivity model rather than by interpolating the temperature profiles beneath each station. However, to maintain the 

suitability, both the training and prediction dataset need to be in the balance. 
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Figure 4: Relative error recorded after a prediction test as the effect of changing the number of nodes in the hidden layers. 

 

3.1 Neuronet Training Strategy 

The optimum ANN architecture was actually chosen based on trial and error. There is no exact formula to obtain the most appropriate 

network model because the way of learning depends highly on the problem (LeCun et al., 2012). While the number of input and output 

neurons was decided, the hidden neurons, as well as the employed hidden layers, were needed to be adjusted. In each trial, the network 

performance was evaluated from the convergence rate, time consumption, and error relative to the real value, in case the ‘unseen’ data is 

present. 

For example, the effect of the number of total hidden neurons to the relative error is evaluated. After training, the calibrated network was 

then used to forecast the temperature in other location. The prediction outcome was compared to the actual temperature data so that the 

error could be calculated. The training quality was evaluated in three AMT stations as shown in Figure 4. The result is counter-intuitive 

as the error is not always decreasing with the number of neurons incorporated in the hidden layer. From this result, the minimum error is 

obtained with 15 hidden nodes, while the larger number than this leads to the slightly higher error. In this work, the ANN topology consists 

of 4 input nodes (i.e., resistivity, depth, latitude, and longitude), 15 hidden nodes in two hidden layers, and a single neuron containing 

temperature information in the output layer. Sigmoid activation function was used in each neuron. 

The trained network needs to be tested to assess the quality by comparing the prediction result to the actual value of temperature in a 

particular location or depth. Therefore, it is necessary to have other data outside the ones used in training or keep some part of the available 

data unseen by the network. When the prediction accuracy is acceptable, the ANN can be used to estimate the temperature in other 

location. Otherwise, some re-adjustment is necessary regarding the network model or the training strategy. 

3.2 Vertical and Lateral Temperature Prediction Test 

Borehole thermal logging usually cannot cover a preferable depth, and performing thermal logging in a large number is costly and time-

consuming. Taking advantage of sufficient penetration of electromagnetic signal in AMT survey and a large number of AMT measurement 

sites, the electromagnetic geothermometer was tested to extrapolate the temperature profile below the borehole up to the desired depth as 

well as forecasting the temperature in the inter-well spacing. 

For vertical temperature extrapolation, the neural network was trained based only on depth, resistivity, and temperature value for each 

depth. The horizontal coordinates were not used as there was no horizontal variation. The depth and resistivity from the same AMT station 

were treated as nodes in the input layer, while the temperature is employed as the only output node in the output layer of the neural network 

training model. The shallower resistivity data was used for teaching the network. In order to evaluate the prediction accuracy, some 

portions of the observed temperature profile, those in the deeper part, were not used. For this purpose, only the data up to 700-800 m depth 

(from the total depth of 1,000-1,800 m) was exploited for training as well as validating the training result, while the rest was used to 

evaluate the performance of the network in extrapolating the temperature profile beneath the borehole by the percentage of the relative 

error (Er) between the estimated and measured values as follows, 

𝐸𝑟 =  √
∑ (𝑇𝑚,𝑖 − 𝑇𝑝,𝑖)2𝑁

𝑖=1

∑ 𝑇𝑚,𝑖
2𝑁

𝑖=1

 × 100% ,                                                                                                                                               (3)   

where Tm,i and Tp,i are the measured and predicted values of the i-th parameter, respectively, and N represents the number of observed 

temperatures. 

For the vertical temperature prediction test, three resistivity-temperature data pairs were used for training and for the test as well. They 

are SK201-BT1, SK707-BT5, and SK509-BT6. The resistivity data used for training the network was only a part of the whole the dataset, 

whereas all the data, including the one previously used in training, was used as a proxy for estimating the temperature. The purpose is to 

get an entire idea about how the neural network performance differs from the seen and the unseen case. The result is shown in Figure 5. 
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Figure 5: ANN vertical and lateral temperature prediction test result (respectively represented by a solid blue line and dotted 

green line), and its comparison with well-log data (solid line; red for the training data, purple for the unseen data). ErV denotes 

the relative error for vertical extrapolation case, while ErL indicates the error of the lateral prediction result. 

 

The predicted portion is different for each dataset. In the first case (SK201-BT1), the data employed in training was up to 700 m, while 

the ANN was used to predict the temperature as deep as 1 km which is about a half of the training data length. The result was acceptable 

as the fit of the observed and estimated curves is good and the error is considered fine. For the second data pair, the portion of training 

and prediction dataset was almost 1:1. From the comparison, there is no clear difference with the previous one. However, in this particular 

graph, it is apparent that the network was unable to follow the actual temperature profile when there is an occurrence of sudden temperature 

change, e.g., at the depth range between 1,000 m and 1,300 m depth. The ANN performance in extrapolating the temperature profile was 

again tested using a larger amount of prediction dataset incorporated in the third data pair. With the relative error of 6.6%, the result was 

utterly satisfying. A small difference in the number of training data does not really affect the prediction quality, the complexity of the 

subsurface temperature structure does.  

The trained network quality for the deeper temperature extrapolation was proven. Following this result,another test to evaluate the ability 

of the ANN to forecast the temperature in other location was also carried out. For this case, the network had learned the resistivity and 

temperature relation based on the available datasets other than the ones used for testing. The result of this test was also shown in Figure 

5, denoted by the dotted green line. Note that in this case, the training data volume was significantly increased. The relative error is lower 

than the previous test, yet the partial temperature fluctuation remains unpredictable. This limitation may be overcome by enriching the 

training data variation or adding some supporting information for the network training, such as porosity, hydrothermal alteration, etc. 

Following all results, the ability of the trained ANN for forecasting the deeper temperature values was satisfying both qualitatively and 

quantitatively. Thus, the ANN was ready to estimate the temperature distribution on a larger scale. 

4. RESULT AND DISCUSSION  

Following a satisfying performance in the prediction test stage, the ability of the neural network to reconstruct the subsurface temperature 

distribution becomes promising. In order to estimate the temperature distribution for the geothermal area, a 3-D inversion of AMT data 

should be done in the first place. 

4.1 Three-Dimensional Resistivity Model 

This process was carried out through the use of ModEM 3-D MT Inversion (Kelbert et al., 2014). Input files for the code were prepared 

using MTpy, an open source Python toolbox for pre-processing of MT data (Krieger and Peacock, 2014). Since the diagonal impedance 

values of the data are not negligible, the inversion was based on full impedance data. All the 60 frequencies were included in the inversion 

process. 

The minimum lateral cell size in the model block is 75 m × 75 m while it becomes two times longer at each padding side. Lateral 

interpolation grid was minimized, considering the small inter-stations distance. Surface model thickness is 10 m and elongated with depth 

until reaching the maximum model depth of 2 km. The vertical block was made as same as the one modeled in the previous 1-D inversion 

so that the depth model for both training and prediction are proportional. The inversion process stopped after 60 iterations with overall 

RMS error of 8.8%. Figure 6 shows the comparison between observed data and model response for four selected AMT sites. From the 

comparison, it is apparent that the calculated data are fit with the measured one except in the lowest frequency range, of the K02 station 

in particular. Small error and the curve fitness indicates that the 3-D inversion was performed successfully. 
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Figure 6: Comparison between the observed data (dotted line) and the 3-D model responses (solid line) for site SK302, SK505, 

and SK707. Red color indicates XY direction, while blue color represents YX direction. 

 

The inversion result was sliced following one profile line at the center as shown in Figure 7. At the shallow depth, irregular shape of high 

resistivity anomaly is encountered. This is most probably indicating the volcanic body that covers the surface. The altered layer is detected 

from 500 m up to 1,500 m depth, and getting thinner in the center and towards the south. At this depth range, the occurrence of fault could 

be identified. The geothermal reservoir zone could be recognized from the medium resistivity anomaly which spreads evenly in the deeper 

part. 

To evaluate the lateral extension of the resistivity anomaly, horizontal depth slices are also presented in the same figure. An interesting 

finding from this figure is that the conductive layer dominantly appears around the area at 500 m depth. In this part, the discontinuity of 

this anomaly can also be clearly seen at the center which could be detected due to the occurrence of a massive fracture system. In the 

subsequent layer, the conductive layer still appears in the northwestern part. This anomaly indicates a more intensive alteration occurred 

in this location. There is no trace of the impermeable conductive layer at the model padding sides. However, because there is no AMT 

data covering this area, the result recorded on the sides is less trustworthy.  In the 1,500 m depth slice, the resistivity contrast is minimum 

which could be an indication of the appearance of a regional structure which takes a role as the reservoir body. 

 

Figure 7: Resistivity block model sliced along the central profile line from north to south (left-hand side) and depth slices (at 0 m, 

500 m, 1000 m, and 1500 m) of the three-dimensional AMT inversion result. 
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4.2 Subsurface Temperature Estimation 

The subsurface heat distribution beneath the whole geothermal area was determined. By using the resistivity value resulted from ModEM 

3-D inversion process, the trained ANN predicted the temperature in the same dimensionality. One of the advantages of using the back-

propagation algorithm in ANN is that the time needed for prediction is short. By using the trained network and based on the result of the 

3-D inversion previously, deep temperature distribution was estimated. The final estimated three-dimensional temperature map is shown 

in Figure 8. The coordinate system used in this figure is the local one, as used in the 3-D inversion. To ease the interpretation, scatter plots 

of station locations are placed on the top. 

Apparent from the figure that the highest geothermal gradient detected in this area is located in the south-western part and the north-

western part of the field, which could indicate the occurrence of an active heating zone. From the thermal pattern, it could be assumed 

that the temperature increases towards the east where the volcanic mountains stand.  The gradient is lower in the middle part, and this 

temperature depletion continues along the east-northeast to west-southwest direction, the same orientation with the dominant fracture 

system explained from the geologic investigation. This could be an indication that the highly permeable fractures behave as a passageway 

for the cold meteoric water. 

4.3 Joint Interpretation 

Delineating a complete description of heat distribution within the earth’s interior below the field initially is the main purpose of this work. 

Comprehensive information about temperature anomaly can ease the study about the existing geothermal activity, especially in terms of 

heat propagation analysis. Together with three-dimensional resistivity model, this temperature distribution could promote the detailed and 

integrated interpretation in order to obtain a proper idea about the geothermal system within the area. This joint analysis was implemented, 

as an additional discussion, in order to investigate the correlation between the predicted temperature distribution and the other available 

data, as well as to enhance the reliability of this method. 

To ease the interpretation, the combined model (Figure 9) shows the vertical slice which intersects with some of the wells (BT1, BT4, and 

BT6) so that the information from these boreholes can also be used to enrich the analysis. One interesting finding in the figure is that the 

sudden depletion of temperature occurs in the same place where the fracture is detected below BT4. A thermo-remnant analysis of  sample 

cores indicated that the well encounter a sub-fault oriented in northwest-southeast direction with a dip angle of 70° facing the south. This 

could be an indication that the fault acts as a feeding zone that transports cold water to the reservoir. Note that the width of the fracture 

described in Figure 9 is not to scale. 

The high geothermal gradient encountered in the northwestern part is most probably evidence of an extensive discharge of the geothermal 

fluid. The same reason causes an enormous conductive zone below BT1 which could be inferred as an intensively altered zone. This 

assumption was also supported by the presence of small fumarole manifestations at nearly 1 km to the west from the borehole. A roughly 

similar situation occurred in the southeastern part of the area as recorded in BT6. The alteration seems less intense in this area since the 

closest manifestation is located around 3 km to the southwest, and there is no sign of fault encountered by the wellhead. 

 

Figure 8: The predicted 3-D temperature distribution below the geothermal field presented as isotherm layers of 50, 100, 150, 200, 

and 250 °C. 
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Figure 9: Conceptual model of the subsurface structure below the geothermal area constructed from 3-D resistivity and 

temperature distribution. Length and width of the deduced fault structure are not to scale. The arrows indicate the geothermal 

fluid movement while the colors represent their temperature (blue for the pre-heated fluid, red for the hot fluid). 

 

Taking into account all the findings, it could be assumed that the reservoir body gets the cold water from the large-scale fractures in the 

central part which lower the temperature surrounding the sub-faults. The water is heated by the heat source through a convection 

mechanism occurred extensively below the area which also alters the overlying structure. The hot fluid then moves to the surface as a 

manifestation through the major fault system situated around the geothermal field. 

5. CONCLUSIONS  

The trained ANN had proven its capability to estimate the temperature at great depths up to 2 km. The result of temperature extrapolation 

in depth is satisfying with the average error less than 15%. Following this result, the ANN was also tested to forecast the subsurface 

temperature below other AMT stations. The outcome was as good as the previous test with the average error no larger than 10%. However, 

the ANN could only predict the main trend of the temperature profile. The present ANN strategy was unable to detect the presence of 

sudden temperature fluctuations. The output of the ANN prediction was also profoundly influenced by the variation of training data so 

that any particular unseen case would be difficult to be predicted. 

The ANN test was considered successful and had shown an evident performance when applied in a more extensive temperature prediction. 

It is worth to mention that the dimensionality of the training data does not need to be similar to the temperature that is being predicted. In 

this work, the training data was only supplied by the result of 1-D resistivity data inversion and the available borehole thermogram data 

which is also one-dimensional. The ANN prediction performed well for each predicted model as the pattern of the estimated subsurface 

temperature was reasonable. Both resistivity and temperature data showed some agreement with the surface geological investigation as 

well as the well logging documentation. Considering all results, it is reasonable to conclude that the temperature estimation by using the 

trained artificial neural network is giving an acceptable result. The predicted temperature distribution can provide a lot of information 

about the geothermal system and significantly enhance the data interpretation. Together with some other geological, geochemical and 

geophysical data, this electromagnetic geothermometry can provide essential information to delineate a proper subsurface temperature 

model. 
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